GCE 2005

ALLIANCE

January Series

Mark Scheme

Mathematics

MPC2

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2005 AQA and its licensors. All rights reserved.
COPYRIGHT AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.
Set and published by the Assessment and Qualifications Alliance.
The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX. **Dr Michael Cresswell Director General**

Key to mark scheme and abbreviations used in marking

M mark is for method

m or dM mark is dependent on one or more M marks and is for method A mark is dependent on M or m marks and is for accuracy

B mark is independent of M or m marks and is for method and accuracy

E mark is for explanation

√or ft or F follow through from previous

incorrect result MC mis-copy
CAO correct answer only MR mis-read
CSO correct solution only RA required accuracy
AWFW anything which falls within FW further work

anything which rounds to **AWRT ISW** ignore subsequent work any correct form from incorrect work **ACF FIW** given benefit of doubt AG answer given BOD SC special case WR work replaced by candidate

OE OE FB formulae book A2,1 2 or 1 (or 0) accuracy marks NOS not on scheme -x EE deduct x marks for each error G graph

NMS no method shown c graph

PI possibly implied sf significant figure(s) SCA substantially correct approach dp decimal place(s)

MPC2

Q	Solution	Marks	Total	Comments
1(a)(i)	$y = x + 2x^{-1}$	B1		PI by sight of $-2x^{-2}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - 2x^{-2}$	M1 A1	3	One term correct OE
	dx	Al	3	OE
(ii)	When $x = 2$, $\frac{dy}{dx} = 1 - \frac{2}{4} = \frac{1}{2}$	A1	1	CSO AG (be convinced)
(b)	When $x = 2$, $y = 3$	B1		For $y = 3$
	gradient of normal $= -2$	M1		$m \times m' = -1$ used
	Equation normal $y-3=-2(x-2)$	M1		y - "3" = m(x - 2) OE
		A1	4	Award at 1 st correct form
2()	Total		8	
2(a)	$32^2 = 24^2 + 24^2 - 2 \times 24 \times 24 \cos \theta$	M1		
	or $\sin \frac{1}{2}\theta = \frac{\frac{1}{2}(32)}{24}$ $\cos \theta = \frac{24^2 + 24^2 - 32^2}{2 \times 24 \times 24}$ $= \frac{128}{1152} \{= \frac{1}{9}\} \{= 0.11\}$ or $\frac{1}{2}\theta = \sin^{-1}\left(\frac{2}{3}\right) (= 0.7297)$	m1		
	$\theta = 1.459 = 1.46$ to 3sf	A1	3	CSO AG (be convinced)
(b)	$Arc = r\theta$	M1		
	$= 24 \times 1.459 = 35 \text{ cm}$	A1	2	Condone absent cm; 35 to 35.04
(c)(i)	Area of sector = $\frac{1}{2}r^2\theta$	M1		Seen
	= $\frac{1}{2}$ (24) ² (1.459) = 420.3 = 420 cm ²	A1	2	Condone absent cm ² ; 420 to 420.48
(ii)	Area of triangle = $\frac{1}{2}(24)(24)\sin\theta$ [= 286. ()]	M1		OE
	Shaded area = area of sector – area of triangle	m1		Dep on at least one of the previous two M marks. PI
	$\left[=\frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin\theta\right] = 134 \text{ cm}^2$	A1	3	Condone absent cm ²
	Total		10	

MPC2 (cont)

MPC2 (cont	Solution	Marks	Total	Comments	
Ļ	a+19d=181;	M1		a + (n-1)d used; PI	
	a + 4d = 46				
	$\Rightarrow 15d = 181 - 46$	A1			
	$\Rightarrow d = 9$	A1	3	AG (be convinced)	
(ii)	a = 10	B1	1		
(b)	$S_{20} = \frac{20}{2} [2a + (20 - 1)d]$	M1		OE	
(-)	= 1910	A1	2		
(6)		M1		OE	
	= 11525 – "1910" = 9615	A1√	2	ft on $11525 - c$'s S_{20}	
	Total		8		
4(a)	$\sqrt{x} = x^{\frac{1}{2}}$	B1	1	Accept $k = 0.5$	
(b)	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$ $\frac{1}{2}$	M1			
	$\sqrt{x}(x-1) = x^2 x - x^2 = x^2 - x^2$	A1	2	Accept $p = 1.5, q = 0.5$	
(c)	$\sqrt{x} = x^{\frac{1}{2}}$ $\sqrt{x}(x-1) = x^{\frac{1}{2}}x - x^{\frac{1}{2}} = x^{\frac{3}{2}} - x^{\frac{1}{2}}$ $\int \sqrt{x}(x-1) dx = \frac{x^{2.5}}{2.5} - \frac{x^{1.5}}{1.5} (+c)$	M1 A1√ A1√	3	Increases a power of x by 1 ft non-integer p ft non-integer q	
(d)	$\int_{1}^{2} dx = \left(\frac{2^{2.5}}{2.5} - \frac{2^{1.5}}{1.5}\right) - \left(\frac{1}{2.5} - \frac{1}{1.5}\right)$	M1		Limits; F(2) – F(1)	
	$\dots = \left(\frac{4\sqrt{2}}{2.5} - \frac{2\sqrt{2}}{1.5}\right) - \left(\frac{1}{2.5} - \frac{1}{1.5}\right)$	m1		Fractional powers to surds	
	$\left(\frac{24\sqrt{2}}{15} - \frac{20\sqrt{2}}{15}\right) - \left(-\frac{4}{15}\right) = \text{pr. ans}$	A1	3	CSO AG (be convinced)	
	Total		9		
5(a)	$\log_a x = \log_a 6^3 - \log_a 8$	M1		A law of logs used correctly	
	$\log_a x = \log_a (6^3 \div 8)$	M1		A <u>different</u> law of logs used correctly	
	$\log_a x = \log_a (6^3 \div 8)$ $x = 6^3 \div 8 = 27$	A1	3	CSO AG (be convinced)	
				$\frac{\mathbf{ALT}}{\mathbf{ALT}} \log_{\mathbf{a}} x = 3 \log_{\mathbf{a}} 6 - 3 \log_{\mathbf{a}} 2 (M1)$	
				$\frac{1}{3}\log_a x = \log_a \frac{6}{2} \tag{M1}$	
				$x^{\frac{1}{3}} = 3 \Rightarrow x = 27 \tag{A1) CSO}$	
(b)(i)	$\log_4 1 = 0$	B1			
(ii)	$\log_4 4 = 1$	B1		SC in (b): For all four answers 1/4; 1; 1/2; 2	
(iii)	$\log_4 2 = 0.5$	B1		give 0/4; otherwise mark each	
(iv)	$\log_4 8 = 1.5$	B1	4	independently.	
	Total		7		

MPC2 (cont)

	Solution $(2+x)^3 = (2^3)+3(2^2)(x)+3(2)(x^2)+(x^3)$ = 8 + 12x + 6x2 + x3 (*)	Marks M1	Total	Comments Any valid method; must contain all	
	$(2^3)+3(2^2)(x)+3(2)(x^2)+(x^3)$	M1		This valid inclined, must contain an	
		IVI I			
	$\dots = 0 + 12x + 0x2 + x3 ()$	A1		components	
(ii)		A1 A1	3	Accept $a = 12$ Accept $b = 6$	
(ii)			3		
` '	$(2-x)^3 = 8-12x+6x^2-x^3 $ (**)	M1 A1√	2	Clear $x \to -x$ in (i) OE	
	$(2-x)^3 = 8-12x+6x^2-x^3 $ (**)	Al√	2	ft numerical a and b	
		M1		Subtracts the 2 expressions in (a)	
	$(2+x)^3 - (2-x)^3 = (*) - (**)$ = 24x + 2x ³ .	A1	2	CSO AG (be convinced)	
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 24 + 6x^2$	M1		A power of <i>x</i> decreased by 1	
	U.A			Tr power of a decreased by T	
	For st. pt. $24 + 6x^2 = 0$	A1			
	Not possible since $24 + 6x^2 > 0$	E1	3	Any valid explanation	
7(a)	$A(0^{\circ},1)$	B1	10	Condone radians	
		B1		Condone (0.785,0) or better.	
	$B(45^{\circ},0)$ $C(270^{\circ}, -1)$		4		
	C(270, -1)	B1, B1	4	B1 for 270; B1 for –1	
(b)	Stretch (I) in x-direction (II) with a			More than one transformation is M0	
	scale factor $\frac{1}{2}$ (III)	M1A1	2	M1 for (I) and either (II) or (III)	
	2				
(c)	$\cos^{-1}0.37 = \text{``}68.284\text{''} (=\alpha)$	M1		Cos ⁻¹ 0.37 (PI eg by 68.3 or 1.19)	
	$x = \frac{\alpha}{2} = 34.1(42.)^{\circ}$	A1		G 1 24.20 240 0.506 1	
	$x - \frac{1}{2} = 34.1(42.)$	AI		Condone 34.2°, 34° or 0.596 rads	
	$x = 180 - \frac{\alpha}{2}$	m1		OE eg $2x = 360 - \alpha$	
	2			OE Need both (OE for $2x = $) with no	
	$x = 180 + \frac{\alpha}{2}$ and $x = 180 + 180 - \frac{\alpha}{2}$	m1		extras (quadrants) within the given	
				interval	
	2x = 68.284; 291.715; 428.284; 651.715				
	,				
	$x = (34.1^{\circ};)$	A1	5	Dep. on all three method marks. Must be	
	145.9°; 214.1°; 325.9°			in degrees	
	Total		11		

MPC2 (cont)

MPC2 (cont)				
Q	Solution	Marks	Total	Comments
8(a)	$\{y$ -coordinate of A is $\}$ 2	B1	1	
a. (a)	L = 0.25	D1		
(b)(i)	h = 0.25	B1		
	Integral = $\frac{h}{2}$ {}			
	{} =			
	$f(0) + 2[f(\frac{1}{4}) + f(\frac{1}{2}) + f(\frac{3}{4})] + f(1)$			
	$[1(0) + 2[1(\frac{1}{4}) + 1(\frac{1}{2}) + 1(\frac{1}{4})] + 1(1)$			
		M1		
	{}=	A1√		Condone one numerical slip
	2+4+2[(2.316+2.732+3.279(5.)] {= 6+2 × 8.3276} {= 22.65(5)}	AI√		Accept values to 3sf (rnd or trunc) ft answer from (a) if not "2"
	$\{-0+2\times 6.3270\}\ \{-22.03(3)\}$			it answer from (a) it not 2
	Integral = $0.125 \times 22.655 = 2.8319$			
	Integral = 2.83 to 3 sf	A1	4	CAO Must be 2.83
	-			(NMS scores 0/4)
(ii)	Relevant trapezia drawn on a copy of given	M1		Accept relevant single trapezium
	graph			with its sloping side above the
	{Approximation is an}overestimate	A1	2	curve
	Approximation is an joverestimate	AI	2	
(c)	$5 = 3^x + 1 \Rightarrow 3^x = 4$	B1		
	3 – 3 – 1 – 3 – 1			
	$\log_{10} 3^x = \log_{10} 4$	M1		Takes ln or \log_{10} on both sides of
				$3^x = k$, where $k > 0$
				$S = \kappa$, where $\kappa \geq 0$
	$x \log_{10} 3 = \log_{10} 4$	m1		Use of $\log 3^x = x \log 3$
				030 01 10g3 - x 10g3
	$x = \frac{\lg 4}{1 + 2} = 1.26185 = 1.2619$ to 4dp	A1	Δ	Accept 4dp or better
	lg3	ΛI	7	[If using T&I a full justification is
				required; else M0m0A0]
(d)	$f(x) = 3^{-x} + 1$	B1	1	
	Total		12	
	TOTAL		75	